COOKIES USE
We use necessary system cookies for the correct functioning of the website and optional Google Analytics cookies to obtain visit statistics.
 +info

Cookies config

  • Necessary

    The necessary cookies are absolutely essential for the website to work properly. This category only includes cookies that guarantee basic website security and functionality. These cookies do not store any personal information.

    NameProveedorPropiedadFinalidadCaducidad+info
    _GRECAPTCHAgoogle.comOwnprovide antispam protection with the reCaptcha service6 months
    cc_cookie_acceptfidmag.orgOwnUsada per confirmar que l'usuari ha confirmat / refusat les cookies (i quins tipus accepta)1 any
    WEB_SESSIONfidmag.orgOwnCookie técnica: cookie de sessió PHP. Guarda l'id de sessió d'usuari.al acabar la sessió

  • Analisys

    Analytical cookies are used to understand how visitors interact with the website. These cookies help to provide information on meters, the name of visitors, the percentage of bounces, the font of the traffic, etc.

    NameProveedorPropiedadFinalidadCaducidad+info
    _gaGoogle AnalyticsFrom third partiesCookie d'anàlisi o mesurament: Identifica els usuaris i proporciona informació sobre com els usuaris troben la pàgina web i com la utilitzen per a realització d'Informes estadístics2 anys
    _gat_gtag_UA_141706552_1Google AnalyticsFrom third partiesCookie d'anàlisi o mesurament: Tracking per part de google per google analytics1 minut
    _gidGoogle AnalyticsFrom third partiesCookie d'anàlisi o mesurament: S'usa per limitar el percentatge de sol·licituds24 hores

ConfigureReject allAccept
Back to results
FI
5.969
2024 Human Brain Mapping
Principal component analysis as an efficient method for capturing multivariate brain signatures of complex disorders-ENIGMA study in people with bipolar disorders and obesity.
McWhinney SR, Hlinka J, Bakstein E, Dietze LMF, Corkum ELV, Abé C, Alda M, Alexander N, Benedetti F, Berk M, Bøen E, Bonnekoh LM, Boye B, Brosch K, Canales-Rodríguez EJ, Cannon DM, Dannlowski U, Demro C, Diaz-Zuluaga A, Elvsåshagen T, Eyler LT, Fortea L, Fullerton JM, Goltermann J, Gotlib IH, Grotegerd D, Haarman B, Hahn T, Howells FM, Jamalabadi H, Jansen A, Kircher T, Klahn AL, Kuplicki R, Lahud E, Landén M, Leehr EJ, Lopez-Jaramillo C, Mackey S, Malt U, Martyn F, Mazza E, McDonald C, McPhilemy G, Meier S, Meinert S, Melloni E, Mitchell PB, Nabulsi L, Nenadić I, Nitsch R, Opel N, Ophoff RA, Ortuño M, Overs BJ, Pineda-Zapata J, Pomarol-Clotet E, Radua J, Repple J, Roberts G, Rodriguez-Cano E, Sacchet MD, Salvador R, Savitz J, Scheffler F, Schofield PR, Schürmeyer N, Shen C, Sim K, Sponheim SR, Stein DJ, Stein F, Straube B, Suo C, Temmingh H, Teutenberg L, Thomas-Odenthal F, Thomopoulos SI, Urosevic S, Usemann P, van Haren NEM, Vargas C, Vieta E, Vilajosana E, Vreeker A, Winter NR, Yatham LN, Thompson PM, Andreassen OA, Ching CRK, Hajek T

Limited service to collaborators of the network of Sisters Hospitalarias Centers. You will receive a message in your email with a link to download this article.

Abstract

Multivariate techniques better fit the anatomy of complex neuropsychiatric disorders which are characterized not by alterations in a single region, but rather by variations across distributed brain networks. Here, we used principal component analysis (PCA) to identify patterns of covariance across brain regions and relate them to clinical and demographic variables in a large generalizable dataset of individuals with bipolar disorders and controls. We then compared performance of PCA and clustering on identical sample to identify which methodology was better in capturing links between brain and clinical measures. Using data from the ENIGMA-BD working group, we investigated T1-weighted structural MRI data from 2436 participants with BD and healthy controls, and applied PCA to cortical thickness and surface area measures. We then studied the association of principal components with clinical and demographic variables using mixed regression models. We compared the PCA model with our prior clustering analyses of the same data and also tested it in a replication sample of 327 participants with BD or schizophrenia and healthy controls. The first principal component, which indexed a greater cortical thickness across all 68 cortical regions, was negatively associated with BD, BMI, antipsychotic medications, and age and was positively associated with Li treatment. PCA demonstrated superior goodness of fit to clustering when predicting diagnosis and BMI. Moreover, applying the PCA model to the replication sample yielded significant differences in cortical thickness between healthy controls and individuals with BD or schizophrenia. Cortical thickness in the same widespread regional network as determined by PCA was negatively associated with different clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. PCA outperformed clustering and provided an easy-to-use and interpret method to study multivariate associations between brain structure and system-level variables. PRACTITIONER POINTS: In this study of 2770 Individuals, we confirmed that cortical thickness in widespread regional networks as determined by principal component analysis (PCA) was negatively associated with relevant clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. Significant associations of many different system-level variables with the same brain network suggest a lack of one-to-one mapping of individual clinical and demographic factors to specific patterns of brain changes. PCA outperformed clustering analysis in the same data set when predicting group or BMI, providing a superior method for studying multivariate associations between brain structure and system-level variables.
We are part of
Fundación Hospitalarias
Contact us

Avda. Jordà, 8, 08035 Barcelona
Contact phone: 935 480 105
E-mail: fundacio@fidmag.org
Online contact 

           

 

Reconocimientos a la calidad y la excelencia
Última modificación: 27/03/2025