USO DE COOKIES
Utilizamos cookies necesarias de sistema para el correcto funcionamiento de la web y cookies opcionales de Google Analytics para obtener estadísticas de visita.
 +info

Configuración cookies

  • Necesarias

    Las cookies necesarias son absolutamente esenciales para que el sitio web funcione correctamente. Esta categoría sólo incluye galletas que garantizan funcionalidades básicas y funciones de seguridad del sitio web. Estas cookies no almacenan información personal.

    NombreProveedorPropiedadFinalidadCaducidad+info
    _GRECAPTCHAgoogle.comPropia proveer protección antispam con el servicio el servicio reCaptcha6 meses
    cc_cookie_acceptfidmag.orgPropia Usada per confirmar que l'usuari ha confirmat / refusat les cookies (i quins tipus accepta)1 any
    WEB_SESSIONfidmag.orgPropia Cookie técnica: cookie de sessió PHP. Guarda l'id de sessió d'usuari.al acabar la sessió

  • Análisis

    Les cookies analítiques s'utilitzen per entendre com interactuen els visitantes amb el lloc web. Aquestes cookies ajuden a proporcionar informació sobre mètriques, el nombre de visitants, el percentatge de rebots, la font del trànsit, etc.

    NombreProveedorPropiedadFinalidadCaducidad+info
    _gaGoogle AnalyticsDe tercerosCookie d'anàlisi o mesurament: Identifica els usuaris i proporciona informació sobre com els usuaris troben la pàgina web i com la utilitzen per a realització d'Informes estadístics2 anys
    _gat_gtag_UA_141706552_1Google AnalyticsDe tercerosCookie d'anàlisi o mesurament: Tracking per part de google per google analytics1 minut
    _gidGoogle AnalyticsDe tercerosCookie d'anàlisi o mesurament: S'usa per limitar el percentatge de sol·licituds24 hores

ConfigurarRechazar todasAceptar
Volver a los resultados
FI
5.969
2024 Human Brain Mapping
Principal component analysis as an efficient method for capturing multivariate brain signatures of complex disorders-ENIGMA study in people with bipolar disorders and obesity.
McWhinney SR, Hlinka J, Bakstein E, Dietze LMF, Corkum ELV, Abé C, Alda M, Alexander N, Benedetti F, Berk M, Bøen E, Bonnekoh LM, Boye B, Brosch K, Canales-Rodríguez EJ, Cannon DM, Dannlowski U, Demro C, Diaz-Zuluaga A, Elvsåshagen T, Eyler LT, Fortea L, Fullerton JM, Goltermann J, Gotlib IH, Grotegerd D, Haarman B, Hahn T, Howells FM, Jamalabadi H, Jansen A, Kircher T, Klahn AL, Kuplicki R, Lahud E, Landén M, Leehr EJ, Lopez-Jaramillo C, Mackey S, Malt U, Martyn F, Mazza E, McDonald C, McPhilemy G, Meier S, Meinert S, Melloni E, Mitchell PB, Nabulsi L, Nenadić I, Nitsch R, Opel N, Ophoff RA, Ortuño M, Overs BJ, Pineda-Zapata J, Pomarol-Clotet E, Radua J, Repple J, Roberts G, Rodriguez-Cano E, Sacchet MD, Salvador R, Savitz J, Scheffler F, Schofield PR, Schürmeyer N, Shen C, Sim K, Sponheim SR, Stein DJ, Stein F, Straube B, Suo C, Temmingh H, Teutenberg L, Thomas-Odenthal F, Thomopoulos SI, Urosevic S, Usemann P, van Haren NEM, Vargas C, Vieta E, Vilajosana E, Vreeker A, Winter NR, Yatham LN, Thompson PM, Andreassen OA, Ching CRK, Hajek T

Servicio limitado a colaboradores de la res de centros de Hermanas Hospitalarias. Recibireis un mensaje en vuestro correo electrònico con un enlace para la descarga del presente artículo.

Abstract

Multivariate techniques better fit the anatomy of complex neuropsychiatric disorders which are characterized not by alterations in a single region, but rather by variations across distributed brain networks. Here, we used principal component analysis (PCA) to identify patterns of covariance across brain regions and relate them to clinical and demographic variables in a large generalizable dataset of individuals with bipolar disorders and controls. We then compared performance of PCA and clustering on identical sample to identify which methodology was better in capturing links between brain and clinical measures. Using data from the ENIGMA-BD working group, we investigated T1-weighted structural MRI data from 2436 participants with BD and healthy controls, and applied PCA to cortical thickness and surface area measures. We then studied the association of principal components with clinical and demographic variables using mixed regression models. We compared the PCA model with our prior clustering analyses of the same data and also tested it in a replication sample of 327 participants with BD or schizophrenia and healthy controls. The first principal component, which indexed a greater cortical thickness across all 68 cortical regions, was negatively associated with BD, BMI, antipsychotic medications, and age and was positively associated with Li treatment. PCA demonstrated superior goodness of fit to clustering when predicting diagnosis and BMI. Moreover, applying the PCA model to the replication sample yielded significant differences in cortical thickness between healthy controls and individuals with BD or schizophrenia. Cortical thickness in the same widespread regional network as determined by PCA was negatively associated with different clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. PCA outperformed clustering and provided an easy-to-use and interpret method to study multivariate associations between brain structure and system-level variables. PRACTITIONER POINTS: In this study of 2770 Individuals, we confirmed that cortical thickness in widespread regional networks as determined by principal component analysis (PCA) was negatively associated with relevant clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. Significant associations of many different system-level variables with the same brain network suggest a lack of one-to-one mapping of individual clinical and demographic factors to specific patterns of brain changes. PCA outperformed clustering analysis in the same data set when predicting group or BMI, providing a superior method for studying multivariate associations between brain structure and system-level variables.
Formamos parte de
Fundación Hospitalarias
Contactanos

Avda. Jordà, 8, 08035 Barcelona
Teléfono: 935 480 105
E-mail: fundacio@fidmag.org
Formulario de contacto online 

           

 

Reconocimientos a la calidad y la excelencia
Última modificación: 27/03/2025