US DE COOKIES
Utilitzem cookies necessàries de sistema per al correcte funcionament de la web i cookies opcionals de Google Analytics per obtenir estadístiques de visita.
 +info

Configuració cookies

  • Necessàries

    Les cookies necessàries són absolutament essencials perquè el lloc web funcioni correctament. Aquesta categoria només inclou galetes que garanteixen funcionalitats bàsiques i funcions de seguretat del lloc web. Aquestes cookies no emmagatzemen cap informació personal.

    NomProveïdorPropietatFinalitatCaducitat+info
    _GRECAPTCHAgoogle.comPropiaProveir protecció antispam amb el servei reCaptcha6 mesos
    cc_cookie_acceptfidmag.orgPropiaUsada per confirmar que l'usuari ha confirmat / refusat les cookies (i quins tipus accepta)1 any
    WEB_SESSIONfidmag.orgPropiaCookie técnica: cookie de sessió PHP. Guarda l'id de sessió d'usuari.al acabar la sessió

  • Anàlisi

    Les cookies analítiques s'utilitzen per entendre com interactuen els visitants amb el lloc web. Aquestes cookies ajuden a proporcionar informació sobre mètriques, el nombre de visitants, el percentatge de rebots, la font del trànsit, etc.

    NomProveïdorPropietatFinalitatCaducitat+info
    _gaGoogle AnalyticsDe tercersCookie d'anàlisi o mesurament: Identifica els usuaris i proporciona informació sobre com els usuaris troben la pàgina web i com la utilitzen per a realització d'Informes estadístics2 anys
    _gat_gtag_UA_141706552_1Google AnalyticsDe tercersCookie d'anàlisi o mesurament: Tracking per part de google per google analytics1 minut
    _gidGoogle AnalyticsDe tercersCookie d'anàlisi o mesurament: S'usa per limitar el percentatge de sol·licituds24 hores

ConfigurarRebutjar totesAcceptar
Tornar als resultats
FI
5.969
2024 Human Brain Mapping
Principal component analysis as an efficient method for capturing multivariate brain signatures of complex disorders-ENIGMA study in people with bipolar disorders and obesity.
McWhinney SR, Hlinka J, Bakstein E, Dietze LMF, Corkum ELV, Abé C, Alda M, Alexander N, Benedetti F, Berk M, Bøen E, Bonnekoh LM, Boye B, Brosch K, Canales-Rodríguez EJ, Cannon DM, Dannlowski U, Demro C, Diaz-Zuluaga A, Elvsåshagen T, Eyler LT, Fortea L, Fullerton JM, Goltermann J, Gotlib IH, Grotegerd D, Haarman B, Hahn T, Howells FM, Jamalabadi H, Jansen A, Kircher T, Klahn AL, Kuplicki R, Lahud E, Landén M, Leehr EJ, Lopez-Jaramillo C, Mackey S, Malt U, Martyn F, Mazza E, McDonald C, McPhilemy G, Meier S, Meinert S, Melloni E, Mitchell PB, Nabulsi L, Nenadić I, Nitsch R, Opel N, Ophoff RA, Ortuño M, Overs BJ, Pineda-Zapata J, Pomarol-Clotet E, Radua J, Repple J, Roberts G, Rodriguez-Cano E, Sacchet MD, Salvador R, Savitz J, Scheffler F, Schofield PR, Schürmeyer N, Shen C, Sim K, Sponheim SR, Stein DJ, Stein F, Straube B, Suo C, Temmingh H, Teutenberg L, Thomas-Odenthal F, Thomopoulos SI, Urosevic S, Usemann P, van Haren NEM, Vargas C, Vieta E, Vilajosana E, Vreeker A, Winter NR, Yatham LN, Thompson PM, Andreassen OA, Ching CRK, Hajek T

Servei limitat a col·laboradors/res de la xarxa de centres de Germanes Hospitalàries. Rebreu un missatge al vostre correu-e amb un enllaç per a la descàrrega del present article.

Abstract

Multivariate techniques better fit the anatomy of complex neuropsychiatric disorders which are characterized not by alterations in a single region, but rather by variations across distributed brain networks. Here, we used principal component analysis (PCA) to identify patterns of covariance across brain regions and relate them to clinical and demographic variables in a large generalizable dataset of individuals with bipolar disorders and controls. We then compared performance of PCA and clustering on identical sample to identify which methodology was better in capturing links between brain and clinical measures. Using data from the ENIGMA-BD working group, we investigated T1-weighted structural MRI data from 2436 participants with BD and healthy controls, and applied PCA to cortical thickness and surface area measures. We then studied the association of principal components with clinical and demographic variables using mixed regression models. We compared the PCA model with our prior clustering analyses of the same data and also tested it in a replication sample of 327 participants with BD or schizophrenia and healthy controls. The first principal component, which indexed a greater cortical thickness across all 68 cortical regions, was negatively associated with BD, BMI, antipsychotic medications, and age and was positively associated with Li treatment. PCA demonstrated superior goodness of fit to clustering when predicting diagnosis and BMI. Moreover, applying the PCA model to the replication sample yielded significant differences in cortical thickness between healthy controls and individuals with BD or schizophrenia. Cortical thickness in the same widespread regional network as determined by PCA was negatively associated with different clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. PCA outperformed clustering and provided an easy-to-use and interpret method to study multivariate associations between brain structure and system-level variables. PRACTITIONER POINTS: In this study of 2770 Individuals, we confirmed that cortical thickness in widespread regional networks as determined by principal component analysis (PCA) was negatively associated with relevant clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. Significant associations of many different system-level variables with the same brain network suggest a lack of one-to-one mapping of individual clinical and demographic factors to specific patterns of brain changes. PCA outperformed clustering analysis in the same data set when predicting group or BMI, providing a superior method for studying multivariate associations between brain structure and system-level variables.
Formem part de
HH Província Espanya
Contacteu-nos

Avda. Jordà, 8, 08035 Barcelona
Telèfon: 935 480 105
E-mail: fundacio@fidmag.org
Formulari de contacte online 

           

 

Reconeixements a la qualitat i l'excel·lència
Darrera modificació: 06/11/2024