US DE COOKIES
Utilitzem cookies necessàries de sistema per al correcte funcionament de la web i cookies opcionals de Google Analytics per obtenir estadístiques de visita.
 +info

Configuració cookies

  • Necessàries

    Les cookies necessàries són absolutament essencials perquè el lloc web funcioni correctament. Aquesta categoria només inclou galetes que garanteixen funcionalitats bàsiques i funcions de seguretat del lloc web. Aquestes cookies no emmagatzemen cap informació personal.

    NomProveïdorPropietatFinalitatCaducitat+info
    _GRECAPTCHAgoogle.comPropiaProveir protecció antispam amb el servei reCaptcha6 mesos
    cc_cookie_acceptfidmag.orgPropiaUsada per confirmar que l'usuari ha confirmat / refusat les cookies (i quins tipus accepta)1 any
    WEB_SESSIONfidmag.orgPropiaCookie técnica: cookie de sessió PHP. Guarda l'id de sessió d'usuari.al acabar la sessió

  • Anàlisi

    Les cookies analítiques s'utilitzen per entendre com interactuen els visitants amb el lloc web. Aquestes cookies ajuden a proporcionar informació sobre mètriques, el nombre de visitants, el percentatge de rebots, la font del trànsit, etc.

    NomProveïdorPropietatFinalitatCaducitat+info
    _gaGoogle AnalyticsDe tercersCookie d'anàlisi o mesurament: Identifica els usuaris i proporciona informació sobre com els usuaris troben la pàgina web i com la utilitzen per a realització d'Informes estadístics2 anys
    _gat_gtag_UA_141706552_1Google AnalyticsDe tercersCookie d'anàlisi o mesurament: Tracking per part de google per google analytics1 minut
    _gidGoogle AnalyticsDe tercersCookie d'anàlisi o mesurament: S'usa per limitar el percentatge de sol·licituds24 hores

ConfigurarRebutjar totesAcceptar
Tornar als resultats
FI
4.259
2024 Scientific Reports
Multi-site benchmark classification of major depressive disorder using machine learning on cortical and subcortical measures.
Belov V, Erwin-Grabner T, Aghajani M, Aleman A, Amod AR, Basgoze Z, Benedetti F, Besteher B, Bülow R, Ching CRK, Connolly CG, Cullen K, Davey CG, Dima D, Dols A, Evans JW, Fu CHY, Gonul AS, Gotlib IH, Grabe HJ, Groenewold N, Hamilton JP, Harrison BJ, Ho TC, Mwangi B, Jaworska N, Jahanshad N, Klimes-Dougan B, Koopowitz SM, Lancaster T, Li M, Linden DEJ, MacMaster FP, Mehler DMA, Melloni E, Mueller BA, Ojha A, Oudega ML, Penninx BWJH, Poletti S, Pomarol-Clotet E, Portella MJ, Pozzi E, Reneman L, Sacchet MD, Sämann PG, Schrantee A, Sim K, Soares JC, Stein DJ, Thomopoulos SI, Uyar-Demir A, van der Wee NJA, van der Werff SJA, Völzke H, Whittle S, Wittfeld K, Wright MJ, Wu MJ, Yang TT, Zarate C, Veltman DJ, Schmaal L, Thompson PM, Goya-Maldonado R

Servei limitat a col·laboradors/res de la xarxa de centres de Germanes Hospitalàries. Rebreu un missatge al vostre correu-e amb un enllaç per a la descàrrega del present article.

Abstract

Machine learning (ML) techniques have gained popularity in the neuroimaging field due to their potential for classifying neuropsychiatric disorders. However, the diagnostic predictive power of the existing algorithms has been limited by small sample sizes, lack of representativeness, data leakage, and/or overfitting. Here, we overcome these limitations with the largest multi-site sample size to date (N = 5365) to provide a generalizable ML classification benchmark of major depressive disorder (MDD) using shallow linear and non-linear models. Leveraging brain measures from standardized ENIGMA analysis pipelines in FreeSurfer, we were able to classify MDD versus healthy controls (HC) with a balanced accuracy of around 62%. But after harmonizing the data, e.g., using ComBat, the balanced accuracy dropped to approximately 52%. Accuracy results close to random chance levels were also observed in stratified groups according to age of onset, antidepressant use, number of episodes and sex. Future studies incorporating higher dimensional brain imaging/phenotype features, and/or using more advanced machine and deep learning methods may yield more encouraging prospects.
Formem part de
HH Província Espanya
Contacteu-nos

Avda. Jordà, 8, 08035 Barcelona
Telèfon: 935 480 105
E-mail: fundacio@fidmag.org
Formulari de contacte online 

           

 

Reconeixements a la qualitat i l'excel·lència
Darrera modificació: 06/11/2024