US DE COOKIES
Utilitzem cookies necessaries de sistema pel correcte funcionament de la web i cookies opcionals de Google Analytics per obtenir estadístiques de visita (sense obtenir dades personales). + Info
Acceptar cookies
Tornar als resultats
FI
3.21
2022 Frontiers in Human Neuroscience
Regularized Functional Connectivity in Schizophrenia.
Salvador R, Fuentes-Claramonte P, García-León MÁ, Ramiro N, Soler-Vidal J, Torres ML, Salgado-Pineda P, Munuera J, Voineskos A, Pomarol-Clotet E

Servei limitat a col·laboradors/res de la xarxa de centres de Germanes Hospitalàries. Rebreu un missatge al vostre correu-e amb un enllaç per a la descàrrega del present article.

Abstract

Regularization may be used as an alternative to dimensionality reduction when the number of variables in a model is much larger than the number of available observations. In a recent study from our group regularized regression was employed to quantify brain functional connectivity in a sample of healthy controls using a brain parcellation and resting state fMRI images. Here regularization is applied to evaluate resting state connectivity abnormalities at the voxel level in a sample of patients with schizophrenia. Specifically, ridge regression is implemented with different degrees of regularization. Results are compared to those delivered by the weighted global brain connectivity method (GBC), which is based on averaged bivariate correlations and from the non-redundant connectivity method (NRC), a dimensionality reduction approach that applies supervised principal component regressions. Ridge regression is able to detect a larger set of abnormally connected regions than both GBC and NRC methods, including schizophrenia related connectivity reductions in fronto-medial, somatosensory and occipital structures. Due to its multivariate nature, the proposed method is much more sensitive to group abnormalities than the GBC, but it also outperforms the NRC, which is multivariate too. Voxel based regularized regression is a simple and sensitive alternative for quantifying brain functional connectivity.
Formem part de
HH Província Espanya
Contacteu-nos

Avda. Jordà , 8 - 08035 Barcelona
Telèfon: 93 548 01 05
E-mail: fundacio@fidmag.com
Formulari de contacte online 

         

 

Reconeixements a la qualitat i l'excel·lència
Darrera modificació: 02/08/2022
AGAUR
CIBERSAM
Generalitat de Catalunya
ISCIII
Logo UE 2022
MICINN