US DE COOKIES
Utilitzem cookies necessàries de sistema per al correcte funcionament de la web i cookies opcionals de Google Analytics per obtenir estadístiques de visita.
 +info

Configuració cookies

  • Necessàries

    Les cookies necessàries són absolutament essencials perquè el lloc web funcioni correctament. Aquesta categoria només inclou galetes que garanteixen funcionalitats bàsiques i funcions de seguretat del lloc web. Aquestes cookies no emmagatzemen cap informació personal.

    NomProveïdorPropietatFinalitatCaducitat+info
    _GRECAPTCHAgoogle.comPropiaProveir protecció antispam amb el servei reCaptcha6 mesos
    cc_cookie_acceptfidmag.orgPropiaUsada per confirmar que l'usuari ha confirmat / refusat les cookies (i quins tipus accepta)1 any
    WEB_SESSIONfidmag.orgPropiaCookie técnica: cookie de sessió PHP. Guarda l'id de sessió d'usuari.al acabar la sessió

  • Anàlisi

    Les cookies analítiques s'utilitzen per entendre com interactuen els visitants amb el lloc web. Aquestes cookies ajuden a proporcionar informació sobre mètriques, el nombre de visitants, el percentatge de rebots, la font del trànsit, etc.

    NomProveïdorPropietatFinalitatCaducitat+info
    _gaGoogle AnalyticsDe tercersCookie d'anàlisi o mesurament: Identifica els usuaris i proporciona informació sobre com els usuaris troben la pàgina web i com la utilitzen per a realització d'Informes estadístics2 anys
    _gat_gtag_UA_141706552_1Google AnalyticsDe tercersCookie d'anàlisi o mesurament: Tracking per part de google per google analytics1 minut
    _gidGoogle AnalyticsDe tercersCookie d'anàlisi o mesurament: S'usa per limitar el percentatge de sol·licituds24 hores
    _guidlinkedinDe tercersIdentifica de manera única els visitants per a finalitats d’anàlisi.90 dies
    AnalyticsSyncHistorylinkedinDe tercersEmmagatzema informació sobre la sincronització de dades amb serveis d’anàlisi.30 dies
    bcookielinkedinDe tercersIdentifica dispositius de forma única per motius de seguretat i detecció d’abús.2 anys
    li_gclinkedinDe tercersDesa el consentiment de l’usuari sobre l’ús de cookies no essencials.6 mesos
    li_mclinkedinDe tercersEmmagatzema dades d’identificadors per a la sincronització i segmentació publicitària.2 anys
    liaplinkedinDe tercersManté l’estat d’inici de sessió dels usuaris de LinkedIn.1 any
    lidclinkedinPropiaUtilitzada per al balanç de càrrega entre servidors per assegurar el bon funcionament de LinkedIn.24 hores
    UserMatchHistorylinkedinDe tercersEmmagatzema informació sobre visites per realitzar retargeting publicitari.30 dies

ConfigurarRebutjar totesAcceptar Totes

Publicacions

Tornar als resultats
FI
3.654
2021 Medical Image Analysis
Model-informed machine learning for multi-component T(2) relaxometry
Yu T, Canales-Rodríguez EJ, Pizzolato M, Piredda GF, Hilbert T, Fischi-Gomez E, Weigel M, Barakovic M, Bach Cuadra M, Granziera C, Kober T, Thiran JP

Servei limitat a col·laboradors/res de la xarxa de centres de Germanes Hospitalàries. Rebreu un missatge al vostre correu-e amb un enllaç per a la descàrrega del present article.

Abstract

Recovering the T(2) distribution from multi-echo T(2) magnetic resonance (MR) signals is challenging but has high potential as it provides biomarkers characterizing the tissue micro-structure, such as the myelin water fraction (MWF). In this work, we propose to combine machine learning and aspects of parametric (fitting from the MRI signal using biophysical models) and non-parametric (model-free fitting of the T(2) distribution from the signal) approaches to T(2) relaxometry in brain tissue by using a multi-layer perceptron (MLP) for the distribution reconstruction. For training our network, we construct an extensive synthetic dataset derived from biophysical models in order to constrain the outputs with a priori knowledge of in vivo distributions. The proposed approach, called Model-Informed Machine Learning (MIML), takes as input the MR signal and directly outputs the associated T(2) distribution. We evaluate MIML in comparison to a Gaussian Mixture Fitting (parametric) and Regularized Non-Negative Least Squares algorithms (non-parametric) on synthetic data, an ex vivo scan, and high-resolution scans of healthy subjects and a subject with Multiple Sclerosis. In synthetic data, MIML provides more accurate and noise-robust distributions. In real data, MWF maps derived from MIML exhibit the greatest conformity to anatomical scans, have the highest correlation to a histological map of myelin volume, and the best unambiguous lesion visualization and localization, with superior contrast between lesions and normal appearing tissue. In whole-brain analysis, MIML is 22 to 4980 times faster than the non-parametric and parametric methods, respectively.
Formem part de
Fundación Hospitalarias
HH Província Espanya
Contacteu-nos

Avda. Jordà, 8, 08035 Barcelona
Telèfon: 935 480 105
E-mail: fundacio@fidmag.org
Formulari de contacte online 

           

 

Reconeixements a la qualitat i l'excel·lència
Darrera modificació: 31/10/2025